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Abstract For wntinuous Schrodinger equations the discretization process is defined 
by preserving the Heisenbcrg equation of motion rather than the Schrodinger equation 
itself, For instance, strong changes are obtained for one particle in DC electric fields, h 
the old discretization process, all eigenstates are factorially localized and the spectrum 
bewmes discrete. On the other hand, in our model we wnjectured that the spectrum 
becomes wntinuous. We remark that discrete systems play an important role in physics 
because they are, in many cases, a first approach to real systems. Our goal is to study 
the equivalence between wntinuous and discrete Schmdinger equations by preserving 
the Heisenberg equations of motion. 

1. Introduction 

Discrete equations are used extensively in physics. For instance in solid state physics, 
the model of Anderson with static disorder displays localization of eigenstates [l]. 
In quantum chaos, we have the well known kicked quantum rotator which could 
be related to discrete Schrodinger-type equations [Z]. In classical mechanics, many 
properties of chaos were found using discrete maps (Poincari-sections). For particles 
in magnetic fields, the discrete Hofstadter model has been studied extensively. So, 
discrete models display properties which are in many cases similar to their continuous 
counterpart and that could be advantageous from a mathematical point of view. 

In this paper we are concemed with such a discrete model. We are concemed 
with one particle in extemal fields (eventually DC electric fields). To consider an 
external field in discrete systems is not as straightfonvard as in the continuous case. 
For instance, many authors consider the discrete Schrodinger equation 

as a model for one particle in a DC electric field F. Equation (1) has a resemblance 
with the continuous (ID) Schrodinger equation with DC electric field. The term 
between brackets must be interpreted as equivalent to the operator 6’;. Nevertheless, 
that similarity could be deceptive: Heisenbergs equation of motion, related to (l), 
does not represent one particle with constant acceleration. Moreover, any eigenstate 
of (1) is factorially localized ( F  f: 0) and the spectrum becomes discrete [3]. Those 
results are opposite to others found in the continuous model where any eigenstate is 
also extended in the presence of bounded periodic potentials [4]. 
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To consider the external field on discrete systems we use, for the moment, the 
generic Hamiltonian 

H = xV,&!C?, - D l + l ~ f ~ l t l  - D;d;td.,-, (2) 
I 

where the ‘potentials’ V and D are functions of position I and are calculated by 
using the corresponding Heisenberg equation related to the particular problem. The 
es are the usual fermion creation and anihiiation operators at site 1. Explicitly 

where 14) denotes the state without a particle and Il) the state of the particle at the 
q l4  = 6l,l4) Q4) = IO (3) 

&position. 
The corresponding time-independent Schrodinger equation related to (2) is 

V,+1-  D1t1+1+1- D*+- 1 1 1 = E+I (4) 

v(z)$(z) - @+(z) = E N z ) .  (5) 

and we want to determine V, and Dl in such a way that (4) becomes ‘equivalent’ to 
the continuous Schrodinger equation 

Equivalence between (4) and (5 )  will be assumed when Heisenberg equations of 
motion are equal. For instance, in the continuous case the acceleration operator 

related to (5) is given by a(,) = -8nV(z). Namely, a is diagonal in the 
space-representation. In our discrete model (4), the acceleration operator becomes 
diagonal in that representation only if V, = constant 151. So, the operator acceleration 
a becomes, in that case, 

Equation (6),  must be interpreted as equivalent to the Newton law, and defines the 
off-diagonal potential D in any particular problem. At this point, it is important to 
note that in the ‘discretization’ process we have preserved the Heisenberg equation of 
motion when the choice V, = constant was made. Namely, the effect of an external 
field holds on the off-diagonal potential D, rather than V,. 

For example, a DC electric field F is related to the choice 

D, = - J m e i d l  V, = o (7) 
where c is a constant and 4l an arbitrary phase. The choice (7) gives us A = Ff 
(f = identity) in accord with the continuous case and then, we could consider (4) 
and (7),  equivalent to the continuous Schrodinger equation (5)  with electric field 

Now, we discuss briefly the elimination of the arbitrary phase 4,. This could be 
V(z) = F z .  

carried out by the unitary transformation 
I 

$=*U 

which gives us the discrete Schrodinger equation 

J F ( l +  1)/2+ + J-$I-, = E+, . (9) 
Transformation (8) must be interpreted as a gauge transformation in a similar way to 
the continuous problem with electromagnetic fields. 

Spectral properties of (9) will be studied in the following sections. 
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2. Particles in DC electric field (c = 0): spectral properties 

Here, we will discuss spectral properties of the Schrodinger equation (9). For this 
we consider a sample of finite size N and we put c = 0. Namely, we consider the 
Schrodingeretype equation 

Moreover, we consider boundary conditions & = 1 and $N = 0. 
The physical interpretation of (10) could be the following: the external field F 

produces a deformation on every 'atomic-like orbital' at position 1 in such a way that 
overlap between nearest-neighbour orbitals exists. Namely, if F = 0 tunnelling does 
not exist. 

The solution of (10) becomes direct if we consider the transformation 

$I = H,JV'Z (11) 

HI,, = 2 ( E / ~ ) H , - 2 1 H I - 1 .  (12) 

which gives 

Relation (12) corresponds to the well known recurrence formula for Hermite 
polynomials. The boundary condition $N = 0 gives H , ( E / O )  = 0. Thus, 
the eigenvalues of the Schrodinger equation are just zeros of H,v. In the limit 
N > 1, we have the spectrum 

n{2S- 1 - N} s = 0,1,2.. . N O 
2 d m n  

E, = 

and then -7rm < E, < ~m. The fact that (11) forms an orthonormal basis 
results from the Christoffel-Darbow formula [ti] 

In the semi-infinite case ( N  = CO), the spacing E, - - goes to zero 
and a continuous spectrum could be expected. We remark that spectral properties of 
our model are different from others corresponding to model (1) where the spectrum 
becomes discrete. Also, we note that spectral properties of our model are in good 
accord with continous models of periodic potentials in DC electric fields [4]. 

3. Particles in DC electric field (c # 0): spectral properties 

In this section we conjecture that the spectrun (13) could be also expected in our 
model when c f 0. 

As we have conjectwed, the choice (7) represents a particle in a DC electric field 
because the equation .d = Ff is verified. The study of spectral properties of (9 
(c + 0), for a system of finite size N ,  becomes direct from section 2: as D, i & 
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in the limit I + CO, equation (10) of section 2 is asymptotically correct. Then, the 
spectrum E, (13) must be expected when the boundary condition +,,, = 0 holds 
( N  > 1). In the same way, in the limit N = CO, a continuous spectrum could be 
conjectured (section 2). 

At this point it is important to note that spatial translation in (9) changes c 
by F / 2 .  A similar situation occurs in the continuous model where the energy E 
changes by Fd. This suggests that the role of c, in our model, could be more 
important than an arbitrary constant. 

4. Conclusions and discussions 

The Heisenberg equation of motion ( A  = [ H , [ H , z ] ] j  is preserved, in the 
‘discretization’ process, only if the Schrodinger equaticn, and its associated 
Hamiltonian 

- D,+,V+t,- D ? k l  = E+I (15) 

are considered. In that case, the accceleration operator commutes with the position 
operator as in the continuous problem (5) and, in the space representation, is given 
by 

AI = 211Dlt,12 - 1m ‘ (16) 
Equation (16) must be considered as equivalent to the Newton law in classical 
mechanics. For instance, for a DC electric field, the choice (7) gives A ,  = F ,  
namely a constant acceleration. Spectral properties for that system were studied in 
section 2 (e = 0) and I11 (c f 0). Thus, a continuous spectnm could be expected at 
the semi-infinite Iimit (size N = CO). 

At this point, we can consider two different ways of ‘discretizing’ a given 
Schrodinger equation: (a) using the ‘similar’ discrete Schrodinger equation 

V+I - + I t 1  - @ I - ,  = E+l (17) 
which does not give the same Heisenberg equation as in the continuous case or (6) 
using (15) where D, is determined by demanding a similar Heisenberg equation to 
that in the continuous case (5). 

We remark that our goal was related to considering conceptual impositiom on 
discrete systems rather than particular physical restrictions as is usual in tight-biading 
theory (solid state physics). 

Finally a discussion related to discrete and continuous Schrodinger equations of 
one particle in a DC electric field becomes necessary. Our discrete model could not be 
defied on the whole space; off-diagonal potentials are defied by [Dlt,Iz-~Di[z = F 
( F  > 0) and then if I + --M a solution does not exist. That gives us a lack of 
translation invariance which needs to be investigated. Moreover, for the continuous 
model of a particle in a periodic potential with a DC electric field (for instance 
V ( z )  = F z  + coszZ?r/d), it is clear that the Schrodinger equation is invariant 
under the transformation z -+ z + d ,  E - E -t F d .  Conversely, our equation is 
invariant under I -+ I + n, e - c - Fn/2 .  That suggests that the role of e could 
be more important than an arbitrary constant (c - E?). Finally, we remark that 
if we consider a fmite system (size A’), the lack of translation invariance does not 
necessarily become an obstacle. 
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